



Abstract—In this paper, an anomaly correction method is

proposed which is based on Markov anomaly detection method.

The proposed method employs the probability of transitions

between events to evaluate the behavior of a system. This

method consists of three steps: 1) Construction of transition

matrix by probability of transitions between events and list of

known events are generated in training phase; 2) Detection of

anomaly based on Markov detection method will be done. In

test data when the probability of transition previous event to

current event does not reach a predefined threshold, an

anomaly is detected. Threshold is determined based on

constructed transition matrix in step 1; 3) Check the defined

constraints for each anomalous event to find source of anomaly

and the suitable way to correct the anomalous event. Next, an

event with the highest compliance with the constraints is

selected. Evaluation of the proposed method is done using a

total of 7000 data sets. The operational scope of corrector and

the number of injected anomalies varied between 3 and 5, 1 and

7, respectively. The simulation experiments have been done to

measure the correction coverage rate which is between 53.5%

and 97.2% with average of 77.66%. For evaluation of hardware

consumptions of the proposed method, this method is

implemented by VHDL. Power, area and time consumptions

are on average 87.43 w, 415.48 m2, and 4.12ns, respectively.

Index Terms—Anomaly, anomaly detection, anomaly

correction, correction coverage, embedded systems, fault,

operational scope.

I. INTRODUCTION

Digital systems are inseparable parts of modern life style,

one category of them are embedded systems which are

embodied in other ones for controlling and management

purposes, such as traffic controllers [1], [2], high speed

network switches, airplanes and spacecraft controllers and

medical devices [3]. The characteristic of safety is vital in

embedded systems, because any anomaly or fault can cause

severe financial and physical damages. Therefore, it is

essential to improve fault-tolerance in them.

Sensors are one of important component in embedded

systems [4]. The data produced by sensors are known as

sensor data or sensor data set. The faults in the output of the

sensors are known as anomaly. Anomaly detection and

correction are one of the methods to tolerate faults [5].

Anomaly detection methods are a kind of fault detection

methods such that fault detection can be either explicit or

implicit. Explicit fault detection is usually based on pattern

recognition such as a sign is detected which is directly linked

to a specific fault [6], [7]. On the other hand, in the implicit

fault detection; there are some indirect indicators such as an

anomaly. Some faults do not have any explicit sign and are

Manuscript received November 22, 2014; revised May 5, 2015.

Roghayeh Mojarad and Hamid Reza Zarandi are with the CE & IT

Department, Amirkabir University of Technology, Tehran, Iran (e-mail:

{roghaye_mojarrad, h_zarand}@aut.ac.ir).

detected by unusual behavior. As an example, an Ethernet

broadcast storm that is marked indirectly by high packet

traffic on a network abnormally [8]. Packet traffic is

measured by sensors. There are many sensors that can

measure the state of a network, process or system.

Anomaly detection and correction methods respectively

try to distinguish and amend abnormal events in sensor data.

As importance of data increases, the significance of these

methods enhances. For example, anomaly in a credit card

transaction could be a sign of thievery [9], or an anomaly in

MRI (Magnetic Resonance Imaging) could falsely show a

tumor which result in a wrong decision and put one’s life in

jeopardy [10], again there is the same problem in controlling

hazardous chemicals [11].

Sensor data can be either numerical or categorical [8].

Numerical data are continuous, scalable and have a unique

zero; and mathematical operation can be performed on them.

On the other hand, categorical data are discrete and there is

no order and mathematical operation among them, as an

apple is not twice of an orange [8]. Moreover, as the

computational power increases, more sensors deliver

categorical data [8]. Anomaly detection and correction are

more challenging within categorical data than numerical data,

as it does not have ability to perform statistical analysis on

data. Correcting the anomalies are important to hold

integrity, reliability, safety, security and in general

dependability of the system.

To the best of our knowledge, there is not any anomaly

correction method for categorical data in the scope of

embedded systems. Categorical data are in form of sequence

of symbols. Anomaly in categorical data can be either an

unknown symbol or an unknown or unexpected sequence of

symbols [8].

Although some works had been done on anomaly detection

methods, now ever not much effort was done in the anomaly

correction field. In this paper, an anomaly correction method

is proposed to improve fault tolerance in embedded systems.

This method is based on Markov model and consists of three

steps: 1) Training in design time, 2) Detecting of anomaly in

run time, 3) Correcting of anomaly in run time.

Training in design time: Generate transition matrix and

list of known sequences.

Detecting of anomaly in run time: Anomaly is detected

based on Markov detection method by using the transition

matrix.

Correcting of anomaly in run time: Checking the

defined constraints for finding the source of the anomaly and

considering three states of unique substitution, multiple

substitutions and deletion which are explained in the

following, for correcting of the anomaly.

There are some constraints for each state that they must be

checked and if all constraints for a state are met, that state

will be selected as a candidate for corrected state.

Roghayeh Mojarad and Hamid R. Zarandi

Markov-Based Anomaly Correction in Embedded Systems

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

272DOI: 10.7763/IJCTE.2016.V8.1057

The corrector can see and operate within a window which

is known as corrector window. The corrector uses of this

length for checking constraints because it can only see the

data are in this window. Number of constraints for each state

is related to the length of corrector window. The correction is

done by analyzing the constraints and using a similarity

function.

Threshold is defined as the maximum distance from the

normal data without being detected as anomaly. This value is

set regarding to the training data sets.

Major metrics for evaluating the proposed methods are

correction coverage, power, area and time consumptions. The

evaluation was done using a total of 7000 test data sets for

different number of injected anomalies. The range of injected

anomaly varied from one to seven. The average coverage of

results that is 77.66% shows the effectiveness of the proposed

method on improving fault-tolerance metrics of the

embedded systems.

The structure of the rest of paper is as follows: the Section

II presents a literature review followed by background

information in Section III. Section IV is depicted to elaborate

the proposed method and the Section V discusses the

evaluation method with its results and the paper is wrapped

up with conclusion in Section VI.

II. RELATED WORK

Although many researches were done on anomaly

detection [12]-[14]; however they lack the ability to detect

anomaly in categorical data. DWC (Duplication with

Comparison) and TMR (Triple Modular Redundancy) are of

these types; also if they have the ability to recognize anomaly

in categorical data they are applicable for special sensors like

eyes-detection sensors [15]. Among effective methods on

this field, Markov [8], Stide [8], Probability-based [16] and

buffer-based [16] methods are noticeable. The proposed

method is a method for anomaly correction in categorical

data. The details of the mentioned works come as follow:

Markov detection method includes three phases: 1)

Training 2) Threshold setting 3) Testing. The probabilities of

transitions between states are calculated and transition matrix

is generated. Next, a suitable threshold is defined based on

the results of training phase. Finally, probability of each

transition which exists in the testing data is calculated by

transition matrix and it compares with threshold [8]. If

complementary of probability of the transition is more than

threshold value, the Markov detection method detects

anomaly.

Stide works using three above steps as well: Training data

sets break into overlapping sequences with the length of N.

The value of N is calculated within practice [17].

Duplications are removed from these sequences; afterwards

they are stored in a database.

Testing data set breaks down into overlapping sequences

with the similar length of N, too. These sequences are

analyzed sequentially and are individually searched in the

database, if the sequence exists in the database the score is set

to zero and one if otherwise. The frame with maximum

number of ones shows the placements of the anomaly [17].

In probability-based method, the relative distances of

symbols are used. This method consists of above three steps

as well: Probability matrix is formed by the information of

the data sets. Rows of the matrix are all possible permutations

of pair of symbols in the training data sets and its columns are

possible distances of two symbols in one pair. The entry in i
th

column and j
th

 row shows the probability of occurrence of the

j
th

 pair with the distance of i between each symbol.

All information about distances between symbols is

extracted and with an operation called probability

multiplication the normality of the sequence is computed; if

normality were less than the threshold, the sequence will be

marked as anomaly [16].

Buffer-based method is similar to Stide method, however

with this difference the rare sequences in training phase are

dropped off the database. The testing phase is the same, as

each dataset breaks into overlapping sequences with length of

N; and if they are not in the database, the score would be set

to one and zero if otherwise. If the number of unsuccessful

searches is higher than a given threshold, it will be marked as

anomaly [16].

III. BACKGROUND KNOWLEDGE

The definitions of several keywords of the context are as

follows [8]:

 Surprise factor: determines how likely the event does not

happen.

 Categorical data: some kind of data that is not in

mathematical bonds and is classified.

 Training data set: a data set used for training phases and

teaching the system about normal data.

 Testing data set: a data set used for testing the system and

analyzing its performance.

 Normal data set: a data set which includes normal data

which are obtained from training data set.

A. Anomalous Event

Anomalous event in the output of the sensor is either these

two types:

 Event consists of those symbols which do not exist in

normal data

 Event consists of symbols or permutation of symbol

which is different from one in normal data

An anomaly can be divided in three groups of unknown

symbol, unknown sequence and rare sequence [8]:

Unknown symbol: These anomalies occur when a symbol

comes in testing data set but does not exist in normal data set.

For example, if in training phase, the symbols A, B, C and D

are learned, the symbol G in the testing data set would be

considered as anomaly.

Unknown sequence: A sequence of symbols different from

sequences in the training phase. Unknown sequence is a more

general type of unknown symbols, a sequence that consists of

known symbols but still be unknown, and that is when the

permutation of the symbols is different from them in normal

data. For example, if normal data set consist ABC, BCD, CDE

the testing sequence DCB is unknown; it includes known

symbols but these symbols did not occur in normal data in

that specific order.

Rare sequences: Rare sequences are those that might occur

in the training phase but they are not common; that is their

occurrence is low. So, they do not exist in the normal data.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

273

Their occurrence is compared with defined threshold to be

included in the list of known sequences. For example, if

training dataset includes sequences ABC, BCD, CDF and

DFH; and the percentage of occurrence of the first and last

two are 45% and 5%; if the threshold is 9% then CDF and

DFH would are two rare sequences and they although

occurring in the training data set would be marked as

anomaly.

B. Anomaly Detection

Anomaly detection has a definite operational scope that is

equal to the length of its window. Window size of anomaly

detection determines the length which it can see from data

stream. Anomaly detection is able to analyze only within this

scope. One of important way for evaluating detection and

correction method is to inject anomalies into normal data.

Different coverage of anomaly correction and detection is

related to window size and number of injected anomalies.

Because window size is the length that anomaly detector and

corrector view, this size affects the scope of operation of the

anomaly detector and corrector.

C. Operational Scope of Anomaly Detection

In an anomaly detection system which operates as sliding

window, the operational scope is equal to the size of the

window. As the number of anomalies is not always the same

as the size of window, additionally this difference can affect

its performance; therefore the size of window is important to

be wisely adjusted. Length of window is set in respect of

constraints of surroundings and its application. The

operational scope of a detection or correction system can be

one of the following types [8]:

Whole Scope: The operational scope is equal to total

number of anomalies such that the detector or corrector has

only the ability to view all of the anomalies.

Internal Scope: The number of anomalies is greater than

the operational scope.

Encompassing Scope: The operational scope is greater

than the number of anomalies.

Boundary Scope: The detector sees a part of anomaly as

well as parts of background data.

Background Scope: The detector sees only background

data without any anomalous data.

Fig. 1 shows operational scope of an anomaly detector or

corrector in different modes.

Fig. 1. Operational scope of anomaly detector [8].

D. Markov-Based Anomaly Detection [8]

Markov based anomaly detector distinguishes normal or

anomaly in a flow of data. In this method, probability of

transition between two states is modeled by using of

transition matrix. Key attribute of Markov model is that next

state is only depending on the current state. For example,

aerology is the same and next state only depends on current

state [8], [18]. This attribute can be shown formally as

Equation (1), in which Xt+1
 and Xt are the next and current X

state while and X0 are old state and initial state, respectively

[8]:

1 (1) 1 1 0 0

1 1

(| , ,...,)

(|)

t t t t t t

t t t t

P X x X x X x X x

P X x X x

   

 

   

  
 (1)

Markov anomaly detector operates in three phases:

1) Training phase: In which transition matrix is generated.

2) Setting threshold value.

3) Testing phase: Evaluating the system by the testing data

sets.

Transition matrix is filled by the probability of transition

between each two states which require two counters for each

transition, counting the specific transition and total number of

transition from its source. The required computation for

finding the probability of sample transition AB is shown in

(2), in which P(A, B) is the probability of transition, F(A, B) is

the number of occurrence of this transition in training data

sets, and F(A) is the number of transitions from the state A.

 
 

 

,
, 

F A B
P A B

F A

 (2)

Fig. 2 shows a Markov model with four states. Each state is

depicted with circles with its name on it and arcs illustrate the

transitions with their occurrences on them. Fig. 3 shows the

corresponding transition matrix of the previous model.

Fig. 2. Markov model with four states.

Fig. 3. Transition matrix of Markov model presented in Fig. 1.

The next phase of anomaly detector is setting the threshold

value which is done regarding training data set.

The third phase is evaluating using testing data sets. For

this purpose, probability of each transition is extracted from

the transition matrix; its complementary value would be the

surprise factor of that transition. Equation (3) shows a trend

for providing of surprise factor of each transition.

  ,1  Current NextSuprise Factor P State State (3)

If the surprise factor exceeds the threshold value, the

transition is detected as anomaly and normal if otherwise.

The next section provides details of the proposed method.

The proposed method consists of three phases: 1) Training

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

274

IV. THE PROPOSED MARKOV CORRECTION METHOD

in design time, 2) Detection of anomaly in run time and 3)

Correction of anomaly in run time; the first two phases are

similar to ones in Markov detection system and had been

discussed in previous section; the third phase is the part

which is used to correct anomaly.

During analyzing a sequence, when it is detected as

anomaly in detection phase; it is to be corrected in the third

phase, the first of all, corrector must determine entities which

cause anomaly. In order to achieve this goal, each entity of

the anomalous sequence is individually analyzed and

different constraints are made. The number of these

constraints is related to the size of corrector window. Smaller

windows show the effectiveness of the system because it can

obtain the desired goal with the less hardware consumptions

such as power, area and time rather than larger ones which

include more information and need high hardware

consumptions. In this proposed corrector, the size of the

window varied from 3 to 5. Number of constraints for

window size of 3 and 4 would be 12 and 20, respectively. In

order to clarify this note, one example is provided, twelve

condition of a system with window size of three are formed in

the following manner. If training sequence is ABCDEFGHI

and testing sequence is ABCDEZGHI; then the order of

analyzing the testing data would be as follows:

TABLE I: THE ORDER OF ANALYZING THE TESTING DATA

Order Sequence

1 ABC

2 BCD

3 CDE

4 DEZ

5 EZG

6 ZGH

7 GHI

Fig. 4. Transition matrix for mentioned example.

In the training phase, the transition matrix is constructed.

Fig. 4 presents transition matrix of this example. If threshold

value is equal to 0.9, the detector performs following trend.

 

 

 

 

 

 

, 1,

 1- , 0 0.9

, 1,

 1- , 0 0.9

, 0,

 1- , 1 0.9



  



  



   

P ABC BCD

Suprise Factor P ABC BCD

P BCD CDE

Suprise Factor P BCD CDE

P CDE DEZ

Suprise Factor P CDE DEZ

Therefore, the first two transitions are normal,

subsequently the third transition is not normal and the

detector marks it as anomaly.

The twelve constraints for correcting the anomalous

sequence DEZ is grouped as in three categories. The first, the

anomalous symbol must be detected. For each symbol of

sequence, four constraints should be met as shown in Table

II.

The question mark depicts unknown place holder and

arrow shows the transition. That is, ABC|BC? means the

corrector searches from possible transitions for a transition

from ABC to a state with B and C as its two first entities.

Each symbol of the sequence can only be corrected if all of

its corresponding constraints are met; there is a symbol that

can be placed as the question mark such that all the transitions

are normal.

Correction mechanism is either substitution or deletion of

the anomaly. To operate it, all options are analyzed and the

best option is selected. Regarding to the options, followings

might occur:

 Unique substitution: If only one option meets the

constraints. This kind of the substitution is done rather

straightforward.

 Multiple substitutions: If many options meet the

constraints; for each option the occurrence of

corresponding transitions are summed; subsequently the

option with the nearer occurrence to random number is

selected. Therefore, this selection is based on weight of

occurrence of events. This strategy is selected because

the method does not always select one state with high

frequency.

 Deletion: If no substitution is possible, the system checks

whether removing symbols would solve the problem. In

other words, this state checks whether removing a

number of symbols makes the sequence or transition

normal.

TABLE II: TWELVE POSSIBLE CONSTRAINTS FOR STATE OF SUBSTATION OF

THE EXAMPLE

Order Sequence

1st symbol

ABC  BC?

BC?C?E

C?E?EZ
?EZEZG

2nd symbol

BCDCD?

CD?D?Z

D?Z?ZG
?ZGZGH

3rd symbol

CDEDE?

DE?E?G

E?G?GH
?GHGHI

? The question mark depicts unknown place holder

For the correction of the mentioned example, the first

symbol cannot be selected as anomalous symbol because all

constraints which need for selection of this symbol are not

met. In fact, there is no symbol to be replaced with the

question mark or to be deleted to have all the transitions as

normal. Table III shows which constraints do not meet the

required constraints for selecting of first symbol as

anomalous symbol. Based on Table III, two of the transitions

cannot be found in transition matrix. Therefore, the first

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

275

symbol is not an anomalous symbol and does not need to

correct.

TABLE III: STATES OF CONSTRAINTS MEETING FOR FIRST SYMBOL OF

ANOMALOUS SEQUENCE

Meet of First Symbol’s Constraints

ABCBC?

BC?C?E

C?E?EZ

?EZEZG

The second symbol cannot be anomaly; as there is no

option for changing, and three of the transition does not exist

in the transition matrix. Table IV shows those transitions

outside the transition matrix.

TABLE IV: STATES OF CONSTRAINTS MEETING FOR SECOND SYMBOL OF

ANOMALOUS SEQUENCE

Meet of Second Symbol’s Constraints

BCDCD?

CD?D?Z

D?Z?ZG

?ZGZGH

The third symbol of the anomalous sequence can be

corrected because all of constraints for this symbol are met.

So, the corrector looks for a symbol by substituting the

anomalous symbol. In this easy example, the corrector

substitutes the question mark with symbol F because all the

corresponding transitions exist with this symbol in transition

matrix and there is not another symbol with these constraints.

To assure and prevent false correction, after the correction;

the detection starts over for the corrected sequence and the

window does not slide forward for the next sequence.

If the system could not find a suitable substitution, each

symbol of anomalous sequence is checked whether it can be

removed. To clarify this note, Table V presents the

constraints of this case for mentioned example. This is

obvious that this anomaly is not created because of

spontaneous data reporting of sensor which the deletion case

is useful for it. For this reason, any constraints of this case are

not met.

TABLE V: NINE POSSIBLE CONSTRAINTS FOR STATE OF DELETION OF THE

EXAMPLE

Order Sequence

1st symbol

ABC  BCE

BCECEZ
CEZEZG

2nd symbol

BCDCDZ

CDZDZG
DZGZGH

3rd symbol

CDEDEG

DEGEGH
EGHGHI

The correction phase is not done fully yet; as these

constraints are suitable for one anomaly in the corrector’s

window size. In other words, anomalies with length of one

are in the length of window of corrector that only one

question mark is used in it. Therefore, if none of them can be

removed then a similarity function is used. Similarity

function is designed for correcting multiple anomalies. The

most similar known sequence to anomalous sequence is

extracted; such that the transitions from or to that sequence

are detected as normal. In the case of existence of a unique

option with highest similarity, that sequence with be

substituted with the anomalous sequence; otherwise, the

system tries to find the most similar sequence regarding the

next and previous sequences. Afterwards the correction

phase is completed and correction is performed.

This method uses a basic similarity function in itself which

is shown in the (4). It is assumed that X , Y are two

sequences such that  0 1, , ,  NX X X X ,  0 1, , ,  NY Y Y Y

and this equation measures the similarity between these two

sequences.

   

 

0

 , ,

0
,

1








 



i N

i i

i

i i

i i

Sim X Y S X Y

If X Y
S X Y

Otherwise

 (4)

Correction with the highest similarity value is the most

suitable correction because it matches to the normal event in

higher level rather than others. In other words, it meets the

most constraints.

Fig. 5 illustrates the pseudo code algorithm of the

correction procedure:

In the stage of training, a transition matrix is generated

which consists of probability of transition between known

sequences. Then, a threshold value based on train data is set.

In the testing stage, the first, the surprise factor is

measured; if this number exceeds the threshold value, an

anomaly is detected; while, in otherwise case, no anomaly is

detected and window of corrector will moves.

Notation:

W: window size for corrector

Training-Stage-Algorithm (training data, W)

1. Construct a transition matrix by probability of transition

between events.

2. Set the threshold value to a given value.

Testing-Stage-Algorithm(testing data, transition matrix,

threshold, W)

1. IF (1-(Probability of transition between two events) > threshold)

THEN

2. Detect-Anomaly=1;

3. Replacement=1;

4. ELSE

5. Detect-Anomaly=0;

6. Move DW forward;

7. END IF

8. IF (Detect-Anomaly=1) THEN

9. Find the anomaly symbol(input anomalous event, input

transition matrix, output anomaly symbol, output TorF)

10. IF (TorF = 1) THEN

11. Candidates-replacement=results of search transitions which

are related with anomalous sequence with unknown symbol in the

transition matrix

12. IF (Candidates-replacement = 1) THEN

13. Do replacement

14. ELSE IF (Candidates-replacement > 1) THEN

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

276

15. Select one of them based on weighted probability.

16. ELSE

17. Replacement=0;

18. END IF

19. ELSE IF (TorF=0 or Replacement=0) THEN

20. YorN = Existence of the transition with new sequence in the

transition matrix after deleting each symbol of anomalous

sequence

21. IF (YorN=1) THEN

22. Candidates-deletion = results of search transition of anomaly

sequence with unknown symbol in the transition matrix

23. IF (Candidates-deletion=1) THEN

24. Deletion is done

25. ELSE IF (Candidates-deletion>1) THEN

26. Selects one of them based on weighted probability.

27. ELSE

28. Use similarity function

29. END IF

30. ELSE

31. Use similarity function

32. END IF

33. ELSE

34. Use similarity function

35. ELSE

36. Move DW forward

Fig. 5. The proposed anomaly correction algorithm.

In the state which an anomaly is detected, in the line 7, the

function of Find the anomaly symbol finds source of anomaly

based on checking of constraints; anomalous symbol is

source of anomaly in anomalous sequence and output of TorF

is shown the number of alternatives of sources of anomaly in

that sequence. If this number is equal to one, the unique

substitution is occurred and if this number is more than one,

the multiple substitutions are occurred and the method selects

one of them based on weighted probability that is provided by

transition matrix. In the case which the number of

alternatives of source of anomaly is not equal or more than

one, the deletion state should be checked. Also, in the case

that output of TorF is zero which shows the method cannot

find the source of anomaly, the deletion state should be

considered. The value of YorN shows if by deleting of a

symbol, the anomalous sequence can be corrected or not; if

this value is one, the state of deletion does and otherwise the

similarity function selects is used to correct the anomalous

sequence.

V. APPLICATION

This method is designed for the embedded systems and it

can be placed between sensor part and controller part in

embedded systems. This place is shown in Fig. 6.

Fig. 6. Location of the proposed method in the embedded systems.

As mentioned previously, the proposed method in order to

detect and correct the i
th

event, it investigates all the events in

the range of in which w illustrates the length of window.

Therefore, this method has to wait for coming events and that

causes some delay in the input of the controller part of

embedded systems.

A real-time system is one that must process information

and produce a response within a specified time.

Subsequently, this method can be known as real-time method

in correction methods.

To be clear, suppose a system of network traffic reporting

which reports each 1ms; if an anomaly is occurred in its

sensor, the proposed method corrects that anomaly before

reporting false information. This action could prevent the loss

of life and property.

VI. EXPERIMENTAL STUDY

The normal data are provided from the University of New

Mexico’s website [19]. They are synthetic data for sendmail

were collected at UNM on Sun SPARC stations running

unpatched SunOS 4.1.1 and 4.1.4 with the included sendmail

[19].

The method is evaluated in three phases:

1) To construct of testing data, a program is implemented.

The first of this program, it randomly selects a part of

normal data as background data for injecting of anomaly

to it. The background data saves as correct data. Then by

considering [20], the program randomly selects place of

anomaly injection and injects or replaces one or more

than one abnormal symbol to the background data to

make testing data. Number of the injected anomalies

varied from one to seven and for each of number of

anomalies, 1000 testing data sets are constructed which

forms 7000 testing data sets.

2) Implementation is done by VHDL to measure the

correction coverage which is key factor for enhancing the

fault tolerance in embedded systems. In this phase, the

proposed method runs for 7000 testing data set and create

corrected data for each testing data set. In order to

hardware analysis, including estimating power, area and

time consumption, the system is synthesized by Synopsis

Design Compiler with library of the 45nm Nangate

opencell [21], [22].

3) The third phase of evaluation is checking the corrected

data that are generated by the proposed method and

comparing them with the original data that do not have

any anomaly and were created in the second phase of

evaluation. In order to calculate the correction coverage

of the system, another program is implemented. It is used

to compare of two data; one of them is output data of

proposed correction method and another one is original

data without any anomaly injection. If two data are same

with each other, correction coverage increases unit

because the number of produced files for each number of

anomaly injection is 1000 and correction coverage is

measured for each state.

A. Correction Coverage Analysis

The results of evaluation of the correction coverage are

shown in Fig. 6.

There is a logical reason for values of correction coverage

which are less than 100% that it is using of random functions

in case of multiple substitutions. Because, if there are many

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

277

options to select, regarding the weights of states and random

number; an option would be selected. As this selection is not

deterministic, therefore the correction coverage is not ideal.

Fig. 6. Correction coverage with various window sizes.

Fig. 6 is shown as the number of anomalies increases, the

correction coverage decreases; because in that case, finding

of the suitable options are more difficult and similarity

function operates with lower accuracy. The results of the

correction coverage with window size of three, four and five

shows the similar manner. The size of window directly

affects the coverage as more information is analyzed and

better decision can be made. It is a fact, as corrector’s

window size increases, the correction coverage enhances,

too.

B. Power, Area and Time Consumption Analysis

The results of synthesis and the estimation of power, area

and time consumption are shown in Table VI.

As the window size increases, the power, area and time

consumption increase too; in that case finding suitable

correction need more time and power than smaller window

size because it needs to check more constraints. Furthermore,

as larger array is needed to save the options in larger window

size and the area consumption is higher.

In this approach, there is a trade-off between precision and

consumption; that is, the larger window provides higher

correction coverage but consumes more power, area and

time.

TABLE VI: HARDWARE CONSUMPTION OF MARKOV-BASED ANOMALY

CORRECTION WITH VARIOUS WINDOW SIZES

Window

Size
Area (μm2)

Dynamic

Power (μw)

Leakage

Power (μw)

Time

(ns)

3 249.64 62.85 1.87 3.98
4 415.48 87.43 1.91 4.12

5 10787.73 814.89 96.21 18.80

VII. CONCLUSIONS

The goal of this paper is to decrease anomalies in

embedded systems and consequently increasing the fault

tolerance metrics in these systems. This paper proposes an

anomaly correction method in categorical data.

All of previous work only detect anomaly, but proposed

method in addition of detection of anomaly, can correct it.

Table VII is shown the differences of mentioned different

methods. The assign “+”, “-” are shown to have the

determined ability or not; as an example, the Markov method

has ability to detect anomalies but it does not have the ability

for anomaly correction. Also, this method has the high

consumption. By analyzing of this Table, it can be concluded

that the proposed method can provide anomaly detection and

correction with modest consumption.

Although Markov-based anomaly correction method have

noticeable hardware consumption but its correction coverage

is significant, too. Each of two other detection methods have

the less amount of detection coverage than Markov detection

method; there for, applying of correcting method to them is

not well as applying it to Markov detection method.

This paper shows anomaly correction methods can be built

based on anomaly detection ones. For that all possible

solutions will be tested against detection criteria.

The results of the evaluation shows that this method can be

used for many applications such as medical equipment for

reporting vital sign, as it can prevent averagely 77.66% of

catastrophic failures of the system with window size of three,

four and five and different number of anomaly from one to

seven. It is considerable note that this method was evaluated

with small window size and the correction coverage was

significantly high, and that shows the effectiveness of the

proposed method.

Although, it is noticeable that the proposed method does

not work in real time, because this method waits for coming

events in order to correct current event. This latency is

directly related to the length of window and consequently the

precision. Therefore, when a system does not require high

precision, the method can eliminate some constraints that

related to coming events and works with some constraints

that depend on the previous events.

REFERENCES

[1] A. V. Lovato, E. Araujo, and J. D. S. da Silva, “Fuzzy decision in

airplane speed control,” in Proc. IEEE International Conference on

Fuzzy Systems, 2006, pp. 1578–1583.
[2] A. Patcha and J. M. Park, “An overview of anomaly detection

techniques: Existing solutions and latest technological trends,”
Computer Networks, vol. 51, no. 12, pp. 3448–3470, 2007.

[3] C. Spence, L. Parra, and P. Sajda, “Detection, synthesis and

compression in mammographic image analysis with a hierarchical
image probability model,” in Proc. IEEE Workshop on Mathematical

Methods in Biomedical Image Analysis, 2001, pp. 3–10.

[4] N. Imran, L. Jooheung, K. Youngju, L. Mingjie and F. D. Ronald,
"Amorphous slack methodology for autonomous fault-handling in

reconfigurable devices," International Journal of Multimedia &

Ubiquitous Engineering, vol. 7, no. 4, 2012.
[5] L. Dilillo, B. Alberto, V. Miroslav, G. Patrick, P. Serge, and V.

Arnaud, "Error resilient infrastructure for data transfer in a distributed

neutron detector," in Proc. IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),

2011, pp. 294-301.

[6] K. Kaur and E. N. Singh, “A survey of intrusion detection techniques,”
International Journal of Advanced Research, vol. 3, no. 6, pp.

402–405, 2013.

[7] M. Bicego, V. Murino, M. Pelillo, and A. Torsello, “Similarity-based
pattern recognition,” Pattern Recognition, vol. 39, no. 10, pp.

1813–1814, 2006.

[8] R. A. Maxion and K. M. C. Tan, “Anomaly detection in embedded
systems,” IEEE Transactions on Computers, vol. 51, no. 2, pp.

108–120, 2002.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

278

TABLE VII: ANALYZING OF MENTIONED DIFFERENT METHODS

Methods Detection Correction Consumption

Markov [9] + - ++
Stide [9] + - +

Probability-based [14] + - +

Buffer-based [14] + - +

The proposed method + + ++

[9] E. Aleskerov and B. Rao, “A neural network based database mining

system for credit card fraud detection,” Computational Intelligence for

Financial Engineering (CIFEr), pp. 220–226, 1997.
[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Computing Surveys, vol. 41, no. 3, p. 15, 2009.

[11] B. Quanz, H. Fei, J. Huan, J. Evans, V. Frost, G. Minden, D. Deavours,
L. Searl, D. DePardo, M. Kuehnhausen, D. Fokum, M. Zeets, and A.

Oguna, “Anomaly Detection with Sensor Data for Distributed

Security,” in Proc. 18th International Conference on Computer
Communications and Networks, Aug. 2009, pp. 1–6.

[12] J. W. Branch, C. Giannella, B. Szymanski, R. Wolff, and H. Kargupta,

“In-network outlier detection in wireless sensor networks,” Knowledge
and Information Systems, vol. 34, no. 1, pp. 23–54, 2013.

[13] D. J. Hill and B. S. Minsker, “Real-time bayesian anomaly detection

for environmental sensor data,” in Proc. International Association for
Hydraulic Research Congress, 2007, vol. 32, no. 2, p. 503.

[14] W. Du, L. Fang, and N. Peng, “Lad: Localization anomaly detection for

wireless sensor networks,” Journal of Parallel and Distributed
Computing, vol. 66, no. 7, pp. 874–886, 2006.

[15] A. Amir, L. Zimet, A. Sangiovanni-Vincentelli, and S. Kao, “An

embedded system for an eye-detection sensor,” Computer Vision and
Image Understanding, vol. 98, no. 1, pp. 104-123, 2005.

[16] M. Zandrahimi, H. R. Zarandi, and M. H. Mottaghi, “Two effective

methods to detect anomalies in embedded systems,” Microelectronics
Journal, vol. 43, no. 1, pp. 77–87, 2012.

[17] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using

sequences of system calls,” Journal of Computer Security, vol. 6, no. 3,
pp. 151–180, 1998.

[18] J. D. Hamilton, Time Series Analysis, Princeton: Princeton University

Press, 1994.
[19] Computer Immune System. (Sep. 2011). [Online]. Available:

http://www.cs.unm.edu/~immsec/data/synth-sm.html

[20] K. Das and J. Schneider, “Detecting anomalous records in categorical

datasets,” in Proc. the 13th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2007, pp. 220–229.
[21] H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design

Compiler, Physical Compiler and PrimeTime, Springer, 2002.

[22] Date Visited. (Aug. 2013). [Online]. Available:
http://www.tkt.cs.tut.fi/tools/public/tutorials/synopsys/design_compil

er/gsdc.html

Roghayeh Mojarad was born in 1989 in Iran. She

graduated as a bachelor with the major of computer
hardware engineering from University of Tehran in

2011. She received her master degree of computer

architecture from Amirkabir University of Technology
in 2013. She was recognized as the top student in her

graduate school. Her research interests include fault

tolerant architecture and systems, reliable
multiprocessors systems, digital system design, FPGA architecure design,

HW/SW co-design.

Hamid Reza Zarandi has received his B.S., M.S., and

Ph.D. degrees in computer engineering from the Sharif
University of Technology, Tehran, Iran, in 2000, and

2002, and 2007, respectively. He has joined Amirkabir

University of Technology as a faculty member since
2007.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

279

http://www.tkt.cs.tut.fi/tools/public/tutorials/synopsys/design_compiler/gsdc.html
http://www.tkt.cs.tut.fi/tools/public/tutorials/synopsys/design_compiler/gsdc.html

